Wednesday, July 1, 2020

What is Curve Surveying | Introduction and types of curve

Curve

Introduction. 

Curves are regular bends provided in the line of communication like roads, railways etc, and also in canals to bring about the gradual change of direction. 
They are used in the vertical plane at all changes of grade to avoid the abrupt change of grade of the apex. 
Where the fieldwork is  composed  of straight lines,  setting  out is comparatively straight forward.  With roads, railways and  pipelines, two  straights  will normally  be connected by  a curve  where there is a  change of direction.
Curves to a  surveyor  includes types of
1. Circular Curves.
2. Transition Curve and
3. Vertical Curve
1. Simple curve
Elements of simple curve
The point at  which two  straights meet is  known  as  the  intersection  point, and  is signified by I  or IP. 
The  two straights deviate by  the  angle delta  (∆), which is  referred as the  deviation angle, the  deflection angle or  the intersection angle. 
Let  PC =  point of  curvature =  start of the curve = TP1  (back tangent point) 
PT  =  point of tangency = finish of the curve = TP2  (forward tangent point) 
IP   =  point of  intersection  of the two tangents 
∆     =  deflection angle of the two tangents
R    =  radius  of the circular  arc 
O    =  centre  of the circle of  the curve 
As the radius  is tangent to the curve, the angle at PC (TP1) = 90° 
Similarly the angle at PT (TP2) = 90° Deflection angle =  ∆ 
Internal angle at IP = 180°  -  ∆ 
Sum of the internal angles  of a 4 sided figure  = 360° 
Internal angle at O = 360 –(90  + 90  + 180 –  ∆) = ∆ (the deflection angle) 

Arc Lengths and Circular Measure of Angles 
In circular  measure of angles, the magnitude of an angle is expressed in  radians. 
An angle  expressed in  radians is defined  as  the ratio of  the arc subtended  by  that angle at the centre of a circle,  to the radius of that circle. 
Angle  at the centre in  Radians= Arc Length Radius When  the arc length is equal to the radius, the ratio = 1/1=1
therefore the  angle at the centre contains  1 radian.
Therefore 1radian/360°= R/2πR=arc distance/circumference of circle.
 1 radian =360°/2π
                  = 180°/π
                  = 57.2957795°
                  = 57° 17'44.806"

Calculations  with  Curves

       Tangent distance  (TD)= R.Tan ∆/2
       Crown secant =R(sec∆/2-1)
       Mid - ordinate = R(1-cos∆/2)
       Arc = R∆/2
       Long chord = 2Rsin∆/2

Chainage of Tangents points
If the chainage of the intersection  point  is known,  the chainage  of the tangent points may be  calculated. 
If the chainage of IP is 2742.60 then  the  chainage at TP1 and TP2 is as follows:
IP-TP1=TD= R. Tan∆/2
                   =500tan60°
                   =866. 03m
Chainage at TP1 =2742.60-866. 03
                            =1876. 57m
Chainage at TP2  is not change at IP+TD but the chainage TP1+length around the curve. 
Arc =R
       =500*2. 0944
       =1047. 20m
Chainage at TP2= 1876. 57+1047. 0944
                             =2923. 77m


2. Transition curve

Transition curve is a curve in plan which is provided to change the horizontal alignment from straight curve gradually mean the radius of the curve varies between infinity to R or R to infinity.
Requirement of transition  curve 
• Tangential  to  straight 
• Meet  circular  curve tangentially 
• At  origin  curvature  should  zero. 
• Curvature  should  same  at  junction  of  circular curve. 
• Rate  of  increase  of  curvature  =  rate  increase  of super elevation 
• Length  of  transition  curve=full seper elevation attained.

Purpose of transition  curve 
• Curvature  is  increase  gradually. •Medium for gradual introduction of superelevation
Provide Extra widening gradually widening 
Advantages
. Increase comfort to passenger on curve
• Reduce  overturning 
• Allow  higher  speed 
• Less  wear  on  gear,  tyre on curve
Types  of  transition  curve 
1. Cubic  parabola -For railway railway 
2. Spiral  or  Clothoid‐Ideal  transition‐        Radius  α Distance
3. LemniscatesUsed Used for road

3. Vertical Curve

Vertical curve are used in highways and street vertical alignment are provided to gradual change between two adjacent  grade lines. Some highways and municipal agencies are introduced vertical curve at every change in grade line slope whereas other agencies introduced  vertical  at the alignment only when the net change in slope direction  exceeds a specific values 1. 5 to 2 percents.

When an vertical curve applied?  

1. At an intersection  of  two  slopes  on  a highway or a roadway
2To  provide  a safe  and comfort  ride  for  vehicles on a  roadway. 
g1   is the slope of lower  station of grade line
g2    is the slope of higher station of grade line
BVC   is the beginning of vertical curve. 
EVC  is the ending of vertical curve. 
PVI   is the point if intersection of the two adjacent grade line

Vertical curve terminology

The algebric change in slope direction is "A"  where 
             A=g2- g1
The geometric curve used in vertical alignment design the vertical axis parabola. 
The parabola has the desirable characterstitics
1. A constant rate of slope which contribute to smooth alignment transition. 
2. Ease of computation of vertical offsets which permit easily  computed curve elevation. 

General equation of parabola
               y = ax2+bx+c = 0
The slope of this curve at any point is given first derivatives. 
            dy/dx =2ax+b
The rye of change of slope is given by second derivatives . 
            d2y/dx2 =2a
  2a is a constant
Also 2a is  written as  A/L. 

Length of vertical curve . 

Length of vertical curve  = Total change of grade / Rate of change of grade. 
                                              =g2-  g1/r


Properties
1. The difference in elevation between BVC and a point on g1 grade line at a distance x ie g1x
2. The tngent offset between the grade line and curve is given by ax2. 
3. The elevation of curve at distance x from BVC is given by BVC+g1x-ax2. 
4. Offsets from two grade lines are symmetrical with respect to PVI.

0 comments:

Post a Comment